Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Inorg Chem Commun ; 126: 108472, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1051709

ABSTRACT

The salt of Aurintricarboxylic acid (ATA) was utilized in this study to synthesize new alkaline earth metal ion complexes. The analytical results proposed the isolation of mononuclear (Sr+2&Ba+2) and binuclear complexes (Mg+2&Ca+2). These complexes were analyzed by available analytical and spectral techniques. The tetrahedral geometry was suggested for all complexes (SP3) through bidentate binding mode of ligand with each central atom. UV-Vis spectra reveal the influence of L â†’ M charge transfer and the estimated optical band gap mostly appeared close to that for known semiconductors. XRD, SEM and TEM studies were executed for new complexes and reflects the nano-crystallinity and homogeneous morphology. The structural forms of ATA and its complexes were optimized by DFT/B3LYP under 6-31G and LANL2DZ basis sets. The output files (log, chk &fchk) were visualized on program screen and according to numbering scheme, many physical features were obtained. It is worthy to note that, a virtual simulation for the inhibition affinity towards COVID-19 proteins as proactive study before the actual application, was done for ATA and its complexes. This was done in addition to drugs currently applied in curing (Hydroxychloroquine & Lopinavir), for comparison and recommendation. Drug-likeness parameters were obtained to evaluate the optimal pharmacokinetics to ensure efficacy. Furthermore, simulated inhibition for COVID-19 cell-growth, was conducted by MOE-docking module. The negative allosteric binding mode represents good inhibitory behavior of ATA, Ba(II)-ATA complex and Lopinavir only. All interaction outcomes of Hydroxychloroquine drug reflect unsuitability of this drug in treating COVID-19. On the other hand, there is optimism for ATA and Lopinvir behaviors in controlling COVID-19 proliferation.

2.
Chin Med ; 15: 102, 2020.
Article in English | MEDLINE | ID: covidwho-797649

ABSTRACT

Scutellaria baicalensis Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB's toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB's active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.

3.
J Xray Sci Technol ; 28(5): 885-892, 2020.
Article in English | MEDLINE | ID: covidwho-648680

ABSTRACT

In this article, we analyze and report cases of three patients who were admitted to Renmin Hospital, Wuhan University, China, for treating COVID-19 pneumonia in February 2020 and were unresponsive to initial treatment of steroids. They were then received titrated steroids treatment based on the assessment of computed tomography (CT) images augmented and analyzed with the artificial intelligence (AI) tool and output. Three patients were finally recovered and discharged. The result indicated that sufficient steroids may be effective in treating the COVID-19 patients after frequent evaluation and timely adjustment according to the disease severity assessed based on the quantitative analysis of the images of serial CT scans.


Subject(s)
Coronavirus Infections/diagnostic imaging , Coronavirus Infections/drug therapy , Glucocorticoids/therapeutic use , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/drug therapy , Tomography, X-Ray Computed/methods , Aged , Artificial Intelligence , Betacoronavirus , COVID-19 , China , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Dose-Response Relationship, Drug , Female , Humans , Lung/diagnostic imaging , Lung/drug effects , Lung/pathology , Lung/physiopathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL